

About me

Trevor Bryant

Security minded DevOps nerd
Knight of NIST

Auditor, Analyst, Engineer, Architect
Tech policy

Instructor @DC_TOOOL
Conference Organizer / Volunteer

apporima.com

y @apporima

apl_security

| know nothing, for | am Jon Snow

Google Image Search

https://www.youtube.com/watch?v=B9vPoCOP7oY

Searching NIST Glossary

Page Not Found

Trying to find a specific publication? Visit our publications homepage or see lists of Draft Publications, FIPS, SP 800s, and NISTIRs.

The page you were looking for cannot be found. If this was unexpected behavior, please send an email to webmaster-csrc@nist.gov. Make sure to
include a detailed description of the actions you took and the page ultimately referred you here.

y @apporima

y@apporima

@apporima

https://docs.google.com/file/d/1smGrfA9Az6tiSUbZYqBRokhp6ZYOvuJT/preview

https://github.com/shieldfy/API-Security-Checklist

Authentication)
JWT (JSON Web Token) - wat (&)
OAuth

Access
Input
Processing

Output

Appllcatlon Programming Interface

y@apporima

OWASP API Security Project

What is APl Security?

A foundational element of innovation in today’s app-driven world is the API. From banks, retail and
fransportation to loT, autonomous vehicles and smart cities, APIs are a critical part of modern mobile,
SaaS and web applications and can be found in customer-facing, partner-facing and internal applications.

By nature, APIs expose application logic and sensitive data such as Personally Identifiable Information
(PIl) and because of this have increasingly become a target for attackers. Without secure APIs, rapid

innovation would be impossible.

API Security focuses on strategies and solutions to understand and mitigate the unique vulnerabilities and
security risks of Application Programming Interfaces (APIs).

hackthebox.eu invite

Audits HTTPS Everywhere

H-'L | Input

Invite Code Output

- inviteapi.min.js

trevorghecate:~$ curl -XPOST http 4 hackthebox.eu/api/ rate
‘ {"success":1,"data":{"code": "RULXUEOtVU1GVVktWEVFUBMtQkZISIMtUERTUF "format":"encoded"},"0":200}trevorghecate:~$

Input

> makeInviteCode()

O ut put WS52aXR1L2d UbmVyYXR1"

@apporima

https://cheatsheetseries.owasp.org/

‘ -
SERIES PROJECT

Life is too short - AppSec is tough - Cheat!

@apporima

https://cheatsheetseries.owasp.org/

Index ASVS

Index Proactive Controls

AJAX Security

Abuse Case

Access Control

Attack Surface Analysis
Authentication

Authorization Testing Automation
Bean Validation

C-Based Toolchain Hardening
C-Based Toolchain Hardening
Choosing and Using Security Questions
Clickjacking Defense

Content Security Policy
Credential Stuffing Prevention
Cross-Site Request Forgery Prevention
Cross Site Scripting Prevention
Cryptographic Storage

DOM based XSS Prevention
Denial of Service

Deserialization

Docker Security

DotNet Security

Error Handling

Forgot Password

HTMLS5 Security

HTTP Strict Transport Security
Injection Prevention

Injection Prevention in Java

Input Validation

Insecure Direct Object Reference Prevention
JAAS

JSON Web Token for Java

Key Management

LDAP Injection Prevention

Logging

Mass Assignment

Microservices based Security Arch Doc
OS Command Injection Defense

PHP Configuration

Password Storage

Pinning

Protect FileUpload Against Malicious File
Query Parameterization

REST Assessment

REST Security

Ruby on Rails Cheatsheet

SAML Security

SQL Injection Prevention

Securing Cascading Style Sheets
Server Side Request Forgery Prevention
Session Management

TLS Cipher String

Third Party Javascript Management
Threat Modeling

Transaction Authorization

Transport Layer Protection
Unvalidated Redirects and Forwards
User Privacy Protection

Virtual Patching

Vulnerability Disclosure

Vulnerable Dependency Management
Web Service Security

XML External Entity Prevention

XML Security

y @apporima

API Security Top 10 Release Candidate is Here!

Broken Object y RN ' ; . : sy . . .
) APIs tend to expose endpoints that handle object identifiers, creating a wide attack surface Level Access Control issue. Object-level authorization checks should be considered in every function

Al | Level .
S that accesses a data source using input from the user.
Authorization
22 Broken Authentication mechanisms are often implemented incorrectly, allowing attackers to compromise authentication tokens or to exploit implementation flaws to assume other user's identities

Authentication | temporarily or permanently. Compromising system's ability to identify the client/user, compromises API security overall.

Excessive Data | Looking forward to generic implementations, developers tend to expose all object properties without considering their individual sensitivity, relying on clients to perform the data filtering before

A3 : P 3 : : : : : : £
Exposure displaying it to the user. Without controlling the client's state, servers receive more-and-more filters which can be abused to gain access to sensitive data.
Lack of . : s ’ s s :
54 |Resoces Quite often, APIs do not impose any restrictions on the size or number of resources that can be requested by the client/user. Not only can this impact the API server performance, leading to
N Denial of Service (DoS), but also leaves the door open to authentication flaws such as brute force.
Rate Limiting
Broken Function . o y : : - ’ : e
= el Complex access control policies with different hierarchies, groups, and roles, and an unclear separation between administrative and regular functions, tend to lead to authorization flaws. By
e exploiting these issues, attackers gain access to other users’ resources and/or administrative functions.
Authorization
25 Mass Binding client provided data (e.g., JSON) to data models, without proper properties filtering based on a whitelist, usually lead to Mass Assignment. Either guessing objects properties, exploring
Assignment other API endpoints, reading the documentation, or providing additional object properties in request payloads, allows attackers to modify object properties they are not supposed to.
A7 Security Security misconfiguration is commonly a result of insecure default configurations, incomplete or ad-hoc configurations, open cloud storage, misconfigured HTTP headers, unnecessary HTTP

Misconfiguration | methods, permissive Cross-Origin resource sharing (CORS), and verbose error messages containing sensitive information.

Injection flaws, such as SQL, NoSQL, Command Injection, etc. occur when untrusted data is sent to an interpreter as part of a command or query. The attacker's malicious data can trick the

A8 | Injection : : 5 ; 3 2 s
interpreter into executing unintended commands or accessing data without proper authorization.

Improper Assets | APIs tend to expose more endpoints than traditional web applications, making proper and updated documentation highly important. Proper hosts and deployed AP versions inventory also play

A9 % S > E 2
Management an important role to mitigate issues such as deprecated API versions and exposed debug endpoints.
Insufficient | Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows attackers to further attack systems, maintain persistence, pivot to more systems
Al10 | Logging & to tamper with, extract, or destroy data. Most breach studies demonstrate the time to detect a breach is over 200 days, typically detected by external parties rather than internal processes or
Monitoring monitoring.

,@apporima

NIST SP 800-204: Security Strategies for Microservices-based Application Systems

Abstract

Microservices architecture is increasingly being used to develop application systems since its smaller codebase facilitates
faster code development, testing, and deployment as well as optimization of the platform based on the type of microservice,
support for independent development teams, and the ability to scale each component independently. Microservices
generally communicate with each other using Application Programming Interfaces (APIs), which requires several core
features to support complex interactions between a substantial number of components. These core features include
authentication and access management, service discovery, secure communication protocols, security monitoring,
availability/resiliency improvement techniques (e.q., circuit breakers), load balancing and throttling, integrity assurance
techniques during induction of new services, and handling of session persistence. Additionally, the core features could be
bundled or packaged into architectural frameworks such as APl gateways and service mesh. The purpose of this document
is to analyze the multiple implementation options available for each individual core feature and configuration options in
architectural frameworks, develop security strategies that counter threats specific to microservices, and enhance the overall
security profile of the microservices-based application.

y @apporima

Learn for API, not for other services

Trevor Bryant 11:04

' 4 APl question: outside of SP 800-204, where can | find about how the gov protects APIs? specifically over the internet

bl

150 ANA
U AV

Aidan Feldman (Tech Portfolio, NYC, he/him) 5 day
aside from FIPS stuff, i cant think of much that v .ould be gov-
specific...

John Jediny (TTS Tech Portfolio / DCA / he/him)
not aware of an v specific guides

seems a good checklist
but is more basic hygiene than APl spec

a1

Gray Brooks (OPP - DCA - he/his) 4
I'm not aware of anything else gov-w lde FIthHI

Gray Brooks (OPP - DCA - he/his) 4 day:

GSA recently promulgated a big, long detailed API security
guide internally and I'd pitched them on letting us publish it
publicly but that hasn't happened yet.

Peter Burkholder (he/DCA/4th year 18F) 221
There's nothing in the document marking it as internal only,
so it's okay to share with government contractors, right?

might know best?

‘;l

l

’

Gray Brooks (OPP - DCA - he/his) 2
if they are folks working at GSA, go for it. if outside, it'd be

better for us to go ahead and engage with the GSA security

team about just making it public.

Peter Burkholder (he/DCA/4th year 18F) 2 hours ag
Well, it says "approved for distribution” so, it's okay to
distribute, right? It's a non-sensitive work produced with
taxpayer funds. | agree we should work with security to
publish, but if the
then I'll go ahead and share out with Trevor.

's a guidance that | shouldn't distribute,

Gray Brooks (OPP - DCA - he/his) 2 ho
| believe that's in reference to distribution internally. Ye:
please hold for the moment. revorbryant, I'll try to get i

public sooner rather than late

&1

Peter Burkholder (he/DCA/4th year 18F) 40 minutes ago
Meanwhile, you could also email and ask

1em to share with y'alls.

@apporima

Summary

e OWASP API Security Project

@) https://www.owasp.org/index.php/OWASP_API_Security Project

e OWASP Cheatsheet Series Project

o https://cheatsheetseries.owasp.org/
e NIST SP 800-204: Security Strategies for Microservices-based Application
Systems
o https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

e Gray Brooks @18F — GSA API Security Guide
o curl -XPOST graybrooks.com

https://www.owasp.org/index.php/OWASP_API_Security_Project
https://cheatsheetseries.owasp.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

Drop Some Knowledge

y @apporima

